US009317489B2

a2 United States Patent 10) Patent No.: US 9,317,489 B2
Antipa (45) Date of Patent: Apr. 19, 2016
(54) VECTOR GRAPHIC CONVERSION INTO 6,771,267 Bl 82004 Muller
FONTS 6,803,913 B1* 10/2004 Fushikietal. 345/467
6,992,671 Bl 1/2006 Corona
. 7,251,365 B2 7/2007 Fux et al.
(71) Applicant: Adobe Systems Incorporated, San Jose, 7.418,652 B2* 82008 Ornsteinetal. 715/200
CA (US) 7,535,471 BL* 52009 Mansfield 345/467
7,549,118 B2* 6/2009 Shur et al. .. 715/234
(72) Inventor: Damien M. Antipa, Saint-Louis (FR) 7,895,513 Bl1* 2/2011 Purietal. 715/234
8,466,920 B2* 6/2013 Leecetal. . .. 345/441
(73) Assignee: Adobe Systems Incorporated, San Jose, 200 5%%3500’42‘47‘41‘ ill * ggg(l)g CB}glrIIsle;t I — 345/467
CA (US) 2006/0005114 Al* 1/2006 Williamson etal. 715/502
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 296 days. FOREIGN PATENT DOCUMENTS
CN 1710534 12/2005
EP 1840838 10/2007
(22) Filed: Jun. 27,2013 EP 1906358 4/2008
KR 20050064113 6/2005
(65) Prior Publication Data OTHER PUBLICATIONS
US 2015/0007021 Al Jan. 1, 2015
Private-Use Characters, Noncharacters & Sentinels FAQ, retrieved
(51) Int.Cl. on Jun. 12, 2015 from archive.org capture on Mar. 8, 2013, 9 pages.*
GO6F 17/00 (2006.01) (Continued)
GO6F 17/22 (2006.01)
GOG6F 17/21 (2006.01) Primary Examiner — Scott Baderman
(52) US.CL Assistant Examiner — Barbara Level
CPC GO6F 17/2247 (2013.01); G06(g'0112/20114§ (74) Attorney, Agent, or Firm — Wolfe-SBMC
(58) Field of Classification Search (57) ABSTRACT
CPC oot GOGF 17/2247; GOGF 17/214 . . .
S S . Techniques are described to convert vector graphics into
ee application file for complete search history. . . .
fonts. In one or more implementations, web content is
(56) References Cited received that includes one or more vector graphics. Each of

U.S. PATENT DOCUMENTS

5,309,548 A * 5/1994 Ohtaetal.ccceeen. 358/1.9
5,577,183 A 11/1996 Weyand
5,583,978 A 12/1996 Collins et al.
5,710,880 A 1/1998 Howlett et al.
6,661,417 Bl 12/2003 Cheng
6,760,029 Bl 7/2004 Phinney et al.
800 \
602 _N

Computing Device 102

the one or more vector graphics are flattened to form a path
that describes a corresponding image of a respective vector
graphic. A font file is formed that includes, for each path, a
glyph and an identifier that is usable to identify the glyph. A
stylesheet file is also created having a class that corresponds
to the glyph and corresponding identifier.

20 Claims, 10 Drawing Sheets

Web Content 210

Web Content 210

Vector Graphic
608

Image i
Module 310

g
Font Creation
Module 130

Font File 608 ’

Styleshest File
810

604—\

Wab Content 210
Vector Graphic 606

Circle
Radius
Center Location
Stroke Line
Fill

Computing Device 102
Font Creation
Module 130
Path Creation
Module 812

Web Content 210

US 9,317,489 B2

Page 2
(56) References Cited 2014/0300604 Al* 10/2014 Pimmelcocoovvvrrenenne 345/440
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

2006/0017733 Al* 1/2006 Matskewich etal. 345/467 “Fonts”, Retrieved from <http://www.w3.org/TR/SVG/fonts.html>
2008/0168135 Al* 7/2008 Redlichetal. 709/204 on Mar. 22, 2013, (Aug. 16, 2011), 22 pages.
2008/0201328 Al* 8/2008 Da Silva et al. ... 707/6 “Scalable Vector Graphics (SVG) 1.1 (Second Edition)”, Retrieved
2010/0149181 Al* 6/2010 Leeetal. ... 345/423 from <http://www.w3.0rg/TR/SVG/> on Mar. 22, 2013, (Aug. 16,
2010/0211883 Al* 82010 ILeeetal. 715/740 2011), 4 Pages
2010/0271404 A1* 10/2010 MAIT weovvvrereerereeroverreonen 345/667 ~ coil).arages.
2011/0090230 Al 4/2011 Bacus et al. ScanFont”, Retrieved from <http://www.fontlab.com/font-con-
2011/0258535 Al* 10/2011 Adler et al. .. 715/235 verter/scanfont/> on Mar. 22, 2013, (Nov. 2007), 3 pages.
2011/0285711 Al* 11/2011 Kilgard 345/426
2012/0079374 Al* 3/2012 Gaddiscccovvvvrvrenenne 715/269 * cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 10 US 9,317,489 B2

100 ‘—\

(Service Provider 104)

(Service Manager Module)

110

Web Content

112

Computing Device 106

\'\ Net k
etwaor =
s (Gt B

Web Content
Consumption Module 116

Content Management\
System 126
Content Repository
LEIT? AP! 128
o

Computing Device 102

~
Web Content Development Module 114
Authoring Tool 118

(Authoring User interface 120

()

Content Packaging Module 122

- Font Creation
~.| Module 130

(Content Package 124

Fig. 1

U.S. Patent

200 \

202
=\

Apr. 19,2016

Sheet 2 of 10

US 9,317,489 B2

LESS Files 212

—

)

Stylesheet
Declarations and

(Computing Device 102

™ Objects 214

<

Web Content

Authoring Tool 218

Authoring User

Project 208 Source Code 216

Dynamic Runtime)

/
i
|
\

Q
[
(
&

i
1
!
!
!
\
\

Web
[Interface 120 J Content 210 images 218)
\ Fonts 220)
\ ! Inline
\ Documentation 222
\\(Unit Test Cases 22_4)
N\ ; Other 226
204 W (—)
Computing Device 102
Web Content 210 Content Packaging
Stylesheet Module 122
Decla_ratlons and Content Verification
Objects 214 Module 228
\\
206 W @

Computing Device 202

Web Content 210

()

Files 212

Content Packaging Web Content 210
Module 122
CSS
File Conversion [Files 232 J
[Module 230 J

U.S. Patent

300 \

Apr. 19,2016

Sheet 3 of 10

US 9,317,489 B2

302
W (" Web Content 210)
Computing Device 102 Inline Directive
- info a CSS
Web Content 210 Content Packaging Class 312
Module 122 o __
Images 308 Image Processing Font 314)
Module 310 T
N
[Sprites 316
\\ y
304 _\ @
(Computing Device 102)
WebZC;c())ntent Content Packaging
— Module 122
Unit Test
l Cases 318 l [Content ':I;g(s)t Module]
\\
306 W @
Computing Device 102
WebZCi%ntent Content Packaging
— Module 122 Documentation
Inline Documentation Page 326
Documentation 322 Module 324
\\ y

U.S. Patent Apr. 19,2016 Sheet 4 of 10 US 9,317,489 B2
400 \
402 w
- Computing Device 102
Web Content - Content
Project 208 Content Packaging Package 124
Module 122
Web Content Content Structuring Hierarchical
210 Module 406 Structure 408
\\ \\
\\
404 : -
_\ Computing Device 102
(Web Content
Content

Package 124

Hierarchical
Structure 408

Consumption Module 116

(Content Management\

System 126

[c

ontent Repository
APl 128

\

\

U.S. Patent Apr. 19,2016 Sheet 5 of 10 US 9,317,489 B2

500 \
502

Receive one or more inputs via an authoring tool of a computing device to
compose a web content project in accordance with a dynamic stylesheet

~

language
y
(504 A

Process the web content project into a content package automatically and
without user intervention by the computing device

e '
506
Verify syntax of the web content project
. y
4 508 ™\

Convert one or more static files of the web content project from the
dynamic stylesheet language into a configuration in accordance with
Cascading Style Sheets (CSS)

\\ y
~ ™
510
Processing images in the web content project
. y
(")
512

L Perform one or more unit tests on the web content project
e ™

514
Extract documentation from the one or more static files to create one

or more pages having the documentation

\\ v

(" 516 ™

Take portions of the web content project into corresponding locations
in a hierarchical structure of nodes of the content package

'

\
518
Install the content package on an executing content management system

Fig. S

U.S. Patent

600 —\

602
R’

Web Content 210

Vector Graphic
606

604
Y

Apr. 19,2016

Sheet 6 of 10

Computing Device 102

Image Processing
Module 310

Font Creation
Module 130

US 9,317,489 B2

(" Web Content 210

Vector Graphic L

Circle
Radius
Center Location
Stroke Line
Fill

v

Font Creation
Module 130

[Path Creation

Module 612

.

(Computing Device ﬂ\

N

Web Content 2

C Font File 608)

Stylesheet File
610

(" Web Content210)

Path 614

List of
Waypoints 616

U.S. Patent

700 —\

702
Y

Apr. 19, 2016

Sheet 7 of 10

704
N\

US 9,317,489 B2

Web Content 210
4)
(Computing Device 102) g
Font Creation A
Module 130 Path 614
—> List of
Path Concatenation [:]
[Module 706) Waypoints 616
o 4 f?
9]
\\

(" Web Content210)
4 P ™ - <
éJ Computing Device 102
~
Font Creation
Path 814 Module 130
List of] > :
; Path Adjustment
[Waypomts 616 [Module 708]
A .
\\ et y
. J

U.S. Patent

800 \

802
3\

Apr. 19,2016

Sheet 8 of 10

Font File 808

US 9,317,489 B2

fo)

(Computing Device 102

Font Creation
Module 130

Font File Generation
Module 806

A &

Glyph 810

Path 614

List of
Waypoints 616

804
_\

-

Font File 808

(

N

Ged

v

.
(L)

Font 810

Path 614

List of
Waypoints 616

Computing Device 102

Font Creation
Module 130

[Stylesheet Generation)

Module 812

A

-

Stylesheet File 814

\

(

Class 816

(

Font File
Reference 818

(

Glyph Identifier
Reference 820

)\
)

\\

U.S. Patent Apr. 19,2016 Sheet 9 of 10 US 9,317,489 B2

900 —\

902
Receive web content that includes one or more vector graphics

v

904
Flatten each of the one or more vector graphics to form a path that
describes a corresponding image of a respective said vector graphic

v

906
Adjust the path

v

908
Form a font file that includes, for each of the paths, a glyph and an
identifier that is usable to identify the glyph

'

910
Create a stylesheet file having a class that corresponds to the glyph and
corresponding identifier

v

~

e A
912
Convert the font file into another format
\\
: ' \
914
Receive web content having the font file and stylesheet file
. y
16

Consume the web content by a content management system

Fig. 9

U.S. Patent Apr. 19, 2016 Sheet 10 of 10 US 9,317,489 B2
1000 4\
Platform 101
[Resources 1018)
~ v
N 7 -
N 7
N s
7
Cloud
1014

=P

Debut LifeCycle
[Ee 1]

=~ ~
- g S~
- -~ -~ ~ ~
= ™)
Computing Device 1002
[Processing] Computer-readable

System 1004

Media 1006

Hardware
Elements 1010

|

]

Memory/
Storage 1012

wrtie |

\

7

10
Interfaces 1008

\,

~

|

Content Packaging)
Module 122

Fég. 10

US 9,317,489 B2

1
VECTOR GRAPHIC CONVERSION INTO
FONTS

BACKGROUND

There is an ever increasing amount of web content made
available via the Internet for consumption by a browser, a
web-enabled application, and so on. Developers may employ
a variety of different techniques to compose and deploy this
web content for consumption by users.

However, conventional techniques that are available to
developers did not adequately address a transition between
composing the web content and deployment of the content.
Further, these techniques may result in inefficient processing
of images, which could also result in inefficiencies in the
consumption of images, such as be a computing device.

For example, conventional techniques could result in a
variety of different image types that could consume a large
amount of resources to store the images as well as render the
images. Accordingly, these conventional techniques could be
frustrating and time consuming to developers, which could
result in web content that could be difficult to consume by
devices with limited resources, such as mobile communica-
tions devices.

SUMMARY

Techniques are described to convert vector graphics into
fonts. In one or more implementations, web content is
received that includes one or more vector graphics. Each of
the one or more vector graphics are flattened to form a path
that describes a corresponding image of a respective vector
graphic. A font file is formed that includes, for each path, a
glyph and an identifier that is usable to identify the glyph. A
stylesheet file is also created having a class that corresponds
to the glyph and corresponding identifier.

This Summary introduces a selection of concepts in a sim-
plified form that are further described below in the Detailed
Description. As such, this Summary is not intended to iden-
tify essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
in different instances in the description and the figures may
indicate similar or identical items. Entities represented in the
figures may be indicative of one or more entities and thus
reference may be made interchangeably to single or plural
forms of the entities in the discussion.

FIG. 1 is an illustration of an environment in an example
implementation that is operable to employ techniques
described herein.

FIG. 2 depicts a system in an example implementation in
which a web content project is developed and one or more
techniques are performed to process the web content project
into a content package.

FIG. 3 depicts a system in an example implementation in
which one or more additional techniques are performed to
process the web content project into a content package.

FIG. 4 depicts a system in an example implementation in
which one or more additional techniques are performed to
process the web content project into a content package.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 is a flow diagram depicting a procedure in an
example implementation in which a procedure is shown to
generate a content package from one or more static files of a
web content project.

FIG. 6 depicts a system in an example implementation in
which vector graphics of a web content project are converted
into glyphs of a font file along with a corresponding stylesheet
file.

FIG. 7 depicts a system in an example implementation in
which paths created by the system of FIG. 6 are further
processed and adjusted.

FIG. 8 depicts a system in an example implementation in
which the font file and corresponding stylesheet of FIG. 6 are
generated.

FIG. 9 is a flow diagram depicting a procedure in an
example implementation in which a procedure is shown to
convert vector graphics into fonts and a corresponding
stylesheet.

FIG. 10 illustrates an example system including various
components of an example device that can be implemented as
any type of computing device as described and/or utilize with
reference to FIGS. 1-9 to implement embodiments of the
techniques described herein.

DETAILED DESCRIPTION

Overview

Conventional techniques that are utilized to generate con-
tent packages are often limited in support of transitions
between developing the web content and generating a pack-
age that includes the web content. Further, these techniques
could be limited in how images are addressed. Accordingly,
conventional techniques may rely on a variety of different
manual processes, which could be frustrating to developers of
web content that wish to leverage the content packages.

Content package generation techniques for web content are
described. In one or more implementations, an automated
system is described that may operate without user interven-
tion to generate a content package. For example, a user may
interact with an authoring tool to compose a web content
project, such as in accordance with a LESS dynamic
stylesheet language. The system may then be utilized to pro-
cess the web content project into a content package, which
may be configured for consumption via a content repository
application programming interface (API).

For example, a user may provide one or more user inputs to
initiate processing of the web content project (e.g., a com-
mand, gesture, use of a cursor control device, and so on) into
a content package that is configured for consumption via a
content repository API for Java® (JCR). This processing may
include converting the web content project from a LESS
configuration to a cascading style sheets (CSS) configuration,
verification of syntax, processing of images if included, per-
forming unit test cases, extracting inline documentation, tak-
ing portions of the web content project into corresponding
locations in a hierarchical structure of the content package,
installation on an executing content management system, and
so on. In this way, the system may be utilized to package the
web content as tested and verified automatically and without
user intervention, thereby increasing a likelihood that these
actions will be undertaken by a developer of the web content.
Further discussion of these techniques may be found in the
discussion of FIGS. 2-5.

Additionally, techniques are described which may be uti-
lized to improve processing and rendering of images as part of
web content. For example, techniques may be employed to
process vector images included in web content into glyphs.

US 9,317,489 B2

3

This may include flattening of a textual description of the
vector graphics to describe the corresponding images as a
path of waypoints. These waypoints may then be stored with
identifiers as glyphs in a single font file with a corresponding
stylesheet as part of the web content. In this way, images
described by the vector graphics may be treated as glyphs for
use as part of the web content, which may improve resource
utilization as part of the generation and consumption of the
web content. Further discussion of these techniques may be
found of the description of FIGS. 6-9.

In the following discussion, an example environment is
first described that may employ the techniques described
herein. An implementation example of web content develop-
ment and an implementation example of vector graphic pro-
cessing are then described in corresponding sections. These
sections include example procedures, which may be per-
formed in the example environment as well as other environ-
ments. Consequently, performance of the example proce-
dures is not limited to the example environment and the
example environment is not limited to performance of the
example procedures.

Example Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ tech-
niques described herein. The illustrated environment 100
includes a computing device 102, a service provider 104, and
another computing device 106 that are communicative
coupled via a network 108. The computing devices 102, 106,
as well as the computing devices that implement the service
provider 104, may be configured in a variety of ways.

A computing device, for instance, may be configured as a
desktop computer, a laptop computer, a mobile device (e.g.,
assuming a handheld configuration such as a tablet or mobile
phone), and so forth. Thus, computing devices may range
from full resource devices with substantial memory and pro-
cessor resources (e.g., personal computers, game consoles) to
a low-resource device with limited memory and/or process-
ing resources (e.g., mobile devices). Additionally, although a
single computing device may be described in the following,
reference to a computing device may be representative of a
plurality of different devices, such as multiple servers utilized
by a business (e.g., the service provider 104) to perform
operations “over the cloud” as further described in relation to
FIG. 10.

Although the network 108 is illustrated as the Internet, the
network may assume a wide variety of configurations. For
example, the network 106 may include a wide area network
(WAN), a local area network (LLAN), a wireless network, a
public telephone network, an intranet, and so on. Further,
although a single network 108 is shown, the network 108 may
also be configured to include multiple networks.

The service provider 104 is illustrated as including a ser-
vice manager module 110. The service manager module 110
is representative of functionality of the service provider 104
to manage web content 112 as part of one or more network-
based services. The web content 112 may be configured in a
variety of ways, such as one or more webpages of a website,
configured for access as part of a network-based application,
and so on.

In the illustrated environment, the computing device 102
includes a web content development module 114 that is rep-
resentative of functionality to compose the web content 112,
e.g., for use by a developer. Computing device 106, on the
other hand, is illustrated as including a web content consump-
tion module 116 that is representative of functionality to
consume the web content 112, e.g., as a browser, as part of a
network-based application, and so on. Although illustrated

10

15

20

25

30

35

40

45

50

55

60

65

4

separately, it should be readily apparent that the represented
functionality may be combined on a single computing device
(e.g., computing device 102 may be used to both develop and
consume the content), may be further distributed (e.g., as part
of a network service), and so on.

The web content developer module 114 is illustrated as
including an authoring tool 118 that is executable to provide
a user interface via which a developer may compose the web
content 112. As such, the authoring tool 118 may be config-
ured in a variety of different ways. For example, the authoring
tool 118 may be configured to support a style sheet language
to describe presentation of a web content project in a markup
language, such as XML and so on.

A content packaging module 122 is also illustrated, which
is representative of functionality that may be employed to
package a web content project as a content package 124, e.g.,
the web content project received from the authoring tool 118
or elsewhere. The content packaging module 122, for
instance, may configure the web content project in accor-
dance with a hierarchical (e.g., tree-like) structure having a
plurality of nodes with associated properties. Thus, a parent/
child relationship of the nodes may also define a relationship
of'content associated with the nodes. In this way, the structure
of the content package 124 may specify how content of the
content package 124 is to be accessed.

As previously described, the computing device 106
includes a web content consumption module 116 that is rep-
resentative of functionality to consume web content 112,
which may include the content package 124 that was com-
municated for distribution via the network 108 by the service
provider 104. The web content consumption module 116
includes a content management system 126 (CMS) having a
content repository API 128. The content repository API 128
may be configured to follow a specification for access to the
content package 124, such as in accordance with a content
repository API for Java® (JCR) or other dynamic runtime
language. The content management system 126 may thus be
used to maintain and manage content associated with the
content package 124 as well as content received via other
techniques (e.g., as single files) via the content repository API
128, which may include versioning metadata and so on.

Thus, the content management system 126 may operate as
a type of object database to store, search, and retrieve hierar-
chical content. As such, the content package 124 may also be
configured by the content packaging module 122 in accor-
dance with this database, such that a hierarchical structure of
the content package 124 is configured in accordance with the
hierarchical structure of the object database maintained by
the content management system 126.

As previously described, conventional techniques that
were utilized to generate a content package 124 did not sup-
port a transition between development of the content and
building of the content package 124. This could cause devel-
opers to forgo use of testing and verification to make sure the
web content “functions as intended.” However, the content
packaging module 122 may perform operations associated
with this transition automatically and without user interven-
tion, such as through configuration as a configurable build
system that aggregates several tools into a single configura-
tion that provides a simple, configurable, and intuitive way to
build a fully-tested content package 124.

A variety of different functionality may be incorporated as
part of the building of the content package 124. An example of
such functionality is illustrated as a font creation module 130.
The font creation module 130 is representative of functional-
ity to convert vector graphics of a web content project into
glyphs. In this way, the font file may provide an efficient

US 9,317,489 B2

5

technique for display of corresponding images as part of the
web content, further discussion of which may be found begin-
ning in relation to the description of FIG. 5.

Content Package Generation

The following discussion describes content package gen-
eration techniques that may be implemented utilizing corre-
sponding systems and devices, as well as other systems and
devices. Further, the systems and devices may also be utilized
to perform other procedures and arrangements thereof.
Aspects of the procedure of FIG. 5 may be implemented in
hardware, firmware, or software, or a combination thereof.
The procedure 500 is shown as a set of blocks that specify
operations performed by one or more devices as illustrated by
the corresponding systems 200, 300,400 of FIGS. 2-4 and are
notnecessarily limited to the orders shown for performing the
operations by the respective blocks. Accordingly, the follow-
ing discussion is arranged as including a description of the
system and procedures in parallel.

FIG. 2 depicts a system 200 in an example implementation
in which a web content project is developed and one or more
techniques are performed to process the web content project
into a content package. The system 200 is illustrated through
the use of first, second, and third stages 202, 204, 206 in this
example.

Atthe first stage 202, one or more inputs are received via an
authoring tool of a computing device to compose a web
content project (block 502). A developer, for instance, may
interact with the authoring tool 218 to describe presentation
semantics of a document, which may be expressed in a
markup language such as XML. This may be performed in a
variety of ways.

For example, the authoring tool 218 may be configured to
support a dynamic stylesheet language, such as LESS, to
generate a web content project 208 having web content 210.
Therefore, instead of writing directly to a cascading style
sheets (CSS) language directly, the authoring tool 218 may
support the use of a variety of different functionality made
available via the dynamic stylesheet language. This function-
ality may include mixins (e.g., which permit embedding of
properties of a class into another class), variables and variable
assignment, nesting (e.g., logical nesting in which the code
blocks themselves are not nested, but rather selectors are
nested to specify inheritance), operators and functions, and so
on. Other examples are also contemplated in which the autho-
rizing tool 218 is configured to accept one or more inputs to
compose CSS directly.

Asillustrated, the web content 210 may include a variety of
different types of data, which may include a variety of difter-
ent types of static content. Examples of this content include
LESS files 212 as described above, stylesheet declarations
and objects 214, dynamic runtime source code 216, may
include images 218, fonts 220 (e.g., files of glyphs), inline
documentation 222, unit test cases 224, and other 226 con-
tent. It should be readily apparent that portions of the data
may be optionally included as part of the web content 210 of
the web content project 208.

Regardless of how the web content 210 originated, the web
content project 208 may then be processed into a content
package automatically and without user intervention by a
computing device (block 504). This may include use of a
variety of different techniques responsive to a single input
from a user to begin the processing, e.g., a command, gesture,
voice command, and so on.

At the second stage 204, for instance, syntax of the web
content project is verified (block 506). As described above,
the web content 210 may include stylesheet declarations and
objects 214. Accordingly, the content packaging module 122

20

25

30

40

45

6

may employ a content verification module 228 to check syn-
tax, including type errors and so on. For example, declaratives
(e.g., LESS/CSS declaratives) and objects (e.g., Javascript®
or other dynamic runtime objects) may be linted and verified
such that the declaratives and objects do not contain syntax
errors or break defined styling rules of the stylesheet lan-
guage.

At the third stage 206, one or more static files of the web
content project are converted from the dynamic stylesheet
language into instructions in accordance with Cascading
Style Sheets (CSS) (block 508). As previously describes,
LESS files 212 may be generated for use of a variety of
functionality such as nesting, variables, mixins, and so on.
However, LESS files 212 may be incompatible with browsers
and other functionality (e.g., web-enabled applications) that
are configured to consume web content 210. Accordingly, the
content packaging module 122 may leverage a file conversion
module 230 to convert the LESS files into CSS files 232 or
other stylesheet language that is consumable by such func-
tionality.

FIG. 3 depicts a system 300 in an example implementation
in which one or more additional techniques are performed to
process the web content project into a content package. The
system 300 is also illustrated through the use of first, second,
and third stages 302, 304, 306 in this example. At the first
stage 302, images in the web content are processed (block
510), if included. For example, the web content 210 may
optionally include images 308, which may be configured in a
variety of ways. Accordingly, the images 308 may be pro-
cessed for inclusion as part of the web content project 210 in
a corresponding variety of ways. This may include placement
as an inline directive into a CSS class 312, such as by con-
version into a format in accordance with Base 64 which is
included as part of the CSS files. The images 308 may also be
converted by the image processing module 310 into a glyph.
This may include processing vector graphics (e.g., mono-
chrome vector graphics) by the image processing module 310
into parts of a font file to support use in a manner that is
similar to use of any other defined glyph, which is described
in greater detail in the Vector Graphic Conversion Section
below. The image processing module 310 may also support
techniques involving sprites 316 such that a portion ofa larger
image is defined. In this way, that portion may be used such
that a larger image may be leveraged for a variety of uses. A
variety of other examples are also contemplated.

At the second stage 304, one or more unit tests are per-
formed on the web content project (block 512). As previously
described, the web content 210 may include unit test cases
318. These unit test cases may be specified manually as part of
the web content. Accordingly, a content test module 320 may
be employed to perform these tests to determine if functions
operate as intended, e.g., to test variables, mathematical
operations, and so on. If one of the tests fail, the content
packaging module 122 may cease processing of the web
content 210 used to form the content package 124.

Atthethird stage 306, documentation is extracted from one
or more static files of the web content 210 to create one or
more pages having the documentation (block 514). As illus-
trated, the web content 210 may include inline documentation
322 as part of the source code of the web content 210. This
inline documentation may be parsed and applied by a docu-
mentation module 324 to a template to form one or more
documentation pages 326 that include this inline documenta-
tion. In this way, the documentation page 326 may serve as a
resource to locate documentation that describes functions
included in the source code in a markup language page that
may be included as part of the content package 124.

US 9,317,489 B2

7

FIG. 4 depicts a system 400 in an example implementation
in which one or more further techniques are performed to
process the web content project into a content package. The
system 400 is also illustrated through the use of first and
second stages 402, 404.

At the first stage 402, portions of the web content project
are taking into corresponding location in a hierarchical struc-
ture of nodes of the content package (block 516). The content
structuring module 406, for instance, may be employed to
process a result of one or more of the previous operations of
FIGS. 2 and 3. This processing may include placement into a
hierarchical structure 408 that corresponds to a client library
structure of the content management system 126. In this way,
the content package 214 is formed that is compatible with a
content repository API 128 such that the content management
system 126 knows “where” to place portions of the content
package 124 (i.e., which nodes) in a content repository main-
tained by the content management system 126.

Additional operations may also be performed by the con-
tent structuring module 406. This may include formation of
reference files, e.g., to be compatible with a content reposi-
tory API for Java® (JCR) through generation of “js.txt” and
“css.txt” files that include line-by-line lists of files to be used
for JavaScript® and CSS files, respectively.

At the second stage 404, the content package 420 is illus-
trated as being installed on an actively executing content
management system 126. The installation may be performed
depending on a developer’s preference. The content package
124 as previously describe may include a hierarchical struc-
ture 408 that is understood via the content repository AP1 128,
which is this instance is illustrated as being executed by a
computing device 102 of the developer. Other examples are
also contemplated, such as automatic upload of the content
package 124 to the service provider 104 as part of the web
content 112, output of a prompt to perform this upload, and so
on.

Vector Graphic Conversion

The following discussion describes vector graphic conver-
sion techniques that may be implemented utilizing corre-
sponding systems and devices, as well as other systems and
devices. Further, the systems and devices may also be utilized
to perform other procedures and arrangements thereof.
Aspects of the procedure of FIG. 9 may be implemented in
hardware, firmware, or software, or a combination thereof.
The procedure 900 is shown as a set of blocks that specify
operations performed by one or more devices as illustrated by
the corresponding systems 600, 700,800 of FIGS. 6-8 and are
notnecessarily limited to the orders shown for performing the
operations by the respective blocks. Accordingly, the follow-
ing discussion is arranged as including a description of the
system and procedures in parallel.

FIG. 6 depicts a system 600 in an example implementation
in which vector graphics of a web content project are con-
verted into glyphs of a font file along with a corresponding
stylesheet file. The system 600 is illustrated through the use of
first and second stages 602, 604 in this example. As shown in
the first stage 602, web content is received that includes one or
more vector graphics (block 902), which may be used to
provide scalable images that perform well for resizing. How-
ever, inclusion of multiple scalable images at multiple occa-
sions as part of the web content 220 may consume significant
portions of the available resources of the computing device
102 to render the images. Conventional techniques to address
this potential concern often resulted in storage of multiple
sizes of the same image, which could be stored as sprites as
previously described.

25

40

45

50

55

8

In this example, a font creation module 130 may be utilized
to identify vector graphics 606 in the web content 210, e.g., as
part of the web content project described earlier. The font
creation module 130 may then be utilized to flatten image
information of the vector graphics to convert the vector
graphic 606 into glyphs included in a font file 608 and a
corresponding stylesheet file 610. This may be performed to
create and compress multiple vector graphics into a single
font file 608 and corresponding stylesheet 608 to enable the
use within a web application, browser, and so on. In this way,
a single file may be distributed that includes the images,
which may increase efficiency by decreasing load time. An
example of this process is described in greater detail as fol-
lows.

At the second stage 604, the font creation module 130 is
illustrated as including a path creation module 612 that is
representative of functionality to flatten each of the one or
more vector graphics to form a path that describes a corre-
sponding image of a respective vector graphic (block 904).
For instance, the path creation module 612 may analyze a
textual description of a vector graphic 606, such as for a circle
asillustrated that describe a name of the type of image, radius,
center location, stroke line, fill, and so on. This textual
description may then be converted to a list of waypoints 616
that describe a path 614 that mimics the textual description,
which be scaled in a manner similar to a glyph.

In this way, information stored to describe the vector
graphic 606 may be modified by taking curves that describe
the image (e.g., a scalar vector graphic format in which an
image is described via a markup language such as XML) and
create a path, thus “flattening” the description of the vector
graphic 606. Thus, the list of waypoints 616 may be used to
replace the textual description of the vector graphic 606. This
process may continue for each vector graphic 606 identified
in the web content 210, and the resulting paths may be saved
one-by-one by the computing device 102.

FIG. 7 depicts a system 700 in an example implementation
in which paths created by the system 600 of FIG. 6 are further
processed and adjusted. This system 700 is also illustrated
through the use of first and second stages 702, 704 in this
example. As shown in the first stage 702, the font creation
module 130 includes a path concatenation module 706 that is
representative of functionality to collect the paths generated
at the second stage 604 of the system 600 of FIG. 6 for a
plurality of vector graphics 606 included in the web content
210. This may include formatting and ordering the list of
waypoints of the paths 614 in accordance with a particular
format, such as a scalar vector graphic (SVG) font file or other
format.

As shown in the in the second stage 704, the font creation
module 130 may also employ a path adjustment module 708
that is representative of functionality to adjust the list of
waypoints 616 of the paths 614 in the web content 210. This
adjustment may be performed to support a variety of func-
tionality, such as to adjust a baseline and placement and
resizing of the path 614 within grid. This may be performed
such that an image corresponding to the path 614 complies
with how a glyph is expected to function as part of the web
content 210, e.g., for consistent alignment and placement as
part of the web content. A variety of other adjustment are also
contemplated. These adjustments may be performed auto-
matically and without user intervention, and may be optional
on the part of a developer of the web content 220.

FIG. 8 depicts a system 800 in an example implementation
in which the font file and corresponding stylesheet of FIG. 6
are generated. This system 800 is also illustrated through the
use of first and second stages 802, 804 in this example. As

US 9,317,489 B2

9

shown in the first stage 802, the font creation module 130
includes a font file generation module 806 that is representa-
tive of functionality to form a font file 808. The font file 808
includes glyphs 810 that correspond to the previously
described paths 614 formed as a list of waypoints 616 for the
vector graphics 606 of the web content 210.

The font file 808 may be formed in a variety of ways. For
example, the font file 808 may be formed such that, for each
of'the paths, a glyph and an identifier that is usable to identify
the glyph is included in the file (block 908). Each glyph 810,
for instance, may be assigned an identifier, such as a Unicode
identifier such that the identifier is compatible with a wide
range of applications. The Unicode identifier may be selected
from a private space of identifiers, which is defined in the
Unicode standard specification that may be leveraged for
such an instance. In this way, the identifier may be used for the
glyph 810 having the list of waypoints 616 that describe the
path 614 in a manner similar to use of a traditional glyph.

At the second stage 804, the font creation module 130 is
illustrated as including a stylesheet generation module 812
that is representative of functionality to create a stylesheet file
814 having a class that corresponds to the glphy and corre-
sponding identifier (block 910). Instructions in the stylesheet
file 814 may be configured in accordance with a variety of
different formats, such as a Cascading Style Sheet (CSS) or
other format.

The stylesheet generation module 812 may also be config-
ured to create a class 816, and in the class include a font file
reference 818 (e.g., a reference to the font file 808) and
references to the glyph identifiers 820, e.g., the Unicode
identifiers described above. This may support use of the class
818 in a markup language (HTML).

A variety of additional processing may be performed by the
font creation module 130, such as to convert the font file into
another format (block 912), such as from a scalar vector
graphic (SVG) font format into other font formats like Tru-
eType, OpenType, Web Open Font Format (WOFF), and so
on to support differences in compatibility.

Thus, at this point the font file 808 and the stylesheet file
814 are ready for consumption. This may be performed in a
variety of ways, such as included as part of the content pack-
age 124 for consumption via a content repository API 128 of
a content management system 126 or otherwise, e.g., as
single files and so on. Accordingly, a computing device 106
may receive web content 112 from a service provider 104
having the font file and stylesheet file (block 914). The web
content is then consumed by a content management system
(block 916) or consumed using other techniques.

Thus, these techniques may be employed to accept vector
graphics 606 as an input. The vector graphics 606 may then be
compressed by manipulating representation information. The
compressed output may then be concatenated into a single
representation file, which is transferred into glyphs by creat-
ing a curve information. Then, each single glyph may be
adjusted through realignment to a baseline and hinted, e.g.,
provided a corresponding identifier. Each of the generated
glyphs may then be transferred into a font files and be placed
into a private use Unicode range. To support efficient use in
web applications, browser, and so on, access information may
be created in the form of a cascading stylesheet directive for
each glyph as the Unicode letter. This directive may then be
used in form of a CSS class to display the corresponding
image.

Example System and Device

FIG. 10 illustrates an example system generally at 1000
that includes an example computing device 1002 that is rep-
resentative of one or more computing systems and/or devices

20

30

40

45

55

10

that may implement the various techniques described herein.
This is illustrated through inclusion of the content packaging
module 122, which may be configured to package web con-
tent as described above. The computing device 1002 may be,
forexample, a server of a service provider, a device associated
with a client (e.g., a client device), an on-chip system, and/or
any other suitable computing device or computing system.

The example computing device 1002 as illustrated
includes a processing system 1004, one or more computer-
readable media 1006, and one or more I/O interface 1008 that
are communicatively coupled, one to another. Although not
shown, the computing device 1002 may further include a
system bus or other data and command transfer system that
couples the various components, one to another. A system bus
can include any one or combination of different bus struc-
tures, such as a memory bus or memory controller, a periph-
eral bus, a universal serial bus, and/or a processor or local bus
that utilizes any of a variety of bus architectures. A variety of
other examples are also contemplated, such as control and
data lines.

The processing system 1004 is representative of function-
ality to perform one or more operations using hardware.
Accordingly, the processing system 1004 is illustrated as
including hardware element 1010 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 1010 are not limited
by the materials from which they are formed or the processing
mechanisms employed therein. For example, processors may
be comprised of semiconductor(s) and/or transistors (e.g.,
electronic integrated circuits (ICs)). In such a context, pro-
cessor-executable instructions may be electronically-execut-
able instructions.

The computer-readable storage media 1006 is illustrated as
including memory/storage 1012. The memory/storage 1012
represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage com-
ponent 1012 may include volatile media (such as random
access memory (RAM)) and/or nonvolatile media (such as
read only memory (ROM), Flash memory, optical disks, mag-
netic disks, and so forth). The memory/storage component
1012 may include fixed media (e.g., RAM, ROM, a fixed hard
drive, and so on) as well as removable media (e.g., Flash
memory, a removable hard drive, an optical disc, and so
forth). The computer-readable media 1006 may be configured
in a variety of other ways as further described below.

Input/output interface(s) 1008 are representative of func-
tionality to allow a user to enter commands and information to
computing device 1002, and also allow information to be
presented to the user and/or other components or devices
using various input/output devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone, a scanner, touch functionality (e.g.,
capacitive or other sensors that are configured to detect physi-
cal touch), a camera (e.g., which may employ visible or
non-visible wavelengths such as infrared frequencies to rec-
ognize movement as gestures that do not involve touch), and
so forth. Examples of output devices include a display device
(e.g., a monitor or projector), speakers, a printer, a network
card, tactile-response device, and so forth. Thus, the comput-
ing device 1002 may be configured in a variety of ways as
further described below to support user interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program modules.
Generally, such modules include routines, programs, objects,
elements, components, data structures, and so forth that per-

US 9,317,489 B2

11

form particular tasks or implement particular abstract data
types. The terms “module,” “functionality,” and “component™
as used herein generally represent software, firmware, hard-
ware, or acombination thereof. The features of the techniques
described herein are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 1002. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “computer-readable signal media.”

“Computer-readable storage media” may refer to media
and/or devices that enable persistent and/or non-transitory
storage of information in contrast to mere signal transmis-
sion, carrier waves, or signals per se. Thus, computer-read-
able storage media refers to non-signal bearing media. The
computer-readable storage media includes hardware such as
volatile and non-volatile, removable and non-removable
media and/or storage devices implemented in a method or
technology suitable for storage of information such as com-
puter readable instructions, data structures, program mod-
ules, logic elements/circuits, or other data. Examples of com-
puter-readable storage media may include, but are not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, hard disks, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other storage device, tangible media, or article of manufac-
ture suitable to store the desired information and which may
be accessed by a computer.

“Computer-readable signal media” may refer to a signal-
bearing medium that is configured to transmit instructions to
the hardware of the computing device 1002, such as via a
network. Signal media typically may embody computer read-
able instructions, data structures, program modules, or other
data in a modulated data signal, such as carrier waves, data
signals, or other transport mechanism. Signal media also
include any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media.

As previously described, hardware elements 1010 and
computer-readable media 1006 are representative of mod-
ules, programmable device logic and/or fixed device logic
implemented in a hardware form that may be employed in
some embodiments to implement at least some aspects of the
techniques described herein, such as to perform one or more
instructions. Hardware may include components of an inte-
grated circuit or on-chip system, an application-specific inte-
grated circuit (ASIC), a field-programmable gate array
(FPGA), a complex programmable logic device (CPLD), and
other implementations in silicon or other hardware. In this
context, hardware may operate as a processing device that
performs program tasks defined by instructions and/or logic
embodied by the hardware as well as a hardware utilized to
store instructions for execution, e.g., the computer-readable
storage media described previously.

Combinations of the foregoing may also be employed to
implement various techniques described herein. Accordingly,
software, hardware, or executable modules may be imple-

20

40

45

50

12

mented as one or more instructions and/or logic embodied on
some form of computer-readable storage media and/or by one
ormore hardware elements 1010. The computing device 1002
may be configured to implement particular instructions and/
or functions corresponding to the software and/or hardware
modules. Accordingly, implementation of a module that is
executable by the computing device 1002 as software may be
achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
1010 of the processing system 1004. The instructions and/or
functions may be executable/operable by one or more articles
of manufacture (for example, one or more computing devices
1002 and/or processing systems 1004) to implement tech-
niques, modules, and examples described herein.

The techniques described herein may be supported by vari-
ous configurations of the computing device 1002 and are not
limited to the specific examples of the techniques described
herein. This functionality may also be implemented all or in
part through use of a distributed system, such as over a
“cloud” 1014 via a platform 1016 as described below.

The cloud 1014 includes and/or is representative of a plat-
form 1016 for resources 1018. The platform 1016 abstracts
underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 1014. The resources 1018 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 1002. Resources 1018 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

The platform 1016 may abstract resources and functions to
connect the computing device 1002 with other computing
devices. The platform 1016 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 1018 that are imple-
mented via the platform 1016. Accordingly, in an intercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
1000. For example, the functionality may be implemented in
part on the computing device 1002 as well as via the platform
1016 that abstracts the functionality of the cloud 1014.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as example forms of implementing the claimed invention.

What is claimed is:

1. A method implemented by one or more computing
devices to convert one or more vector graphics into a font file,
the method comprising:

receiving web content that includes the one or more vector

graphics;

flattening each of the one or more vector graphics to form

apath that describes a corresponding image of a respec-
tive said vector graphic, the flattening replacing a textual
description of the respective said vector graphic with the
path;

forming the font file that includes, for each said path, a

glyph and an identifier that is usable to identify the
glyph; and

creating a stylesheet file having a class that corresponds to

the glyph and corresponding identifier.

US 9,317,489 B2

13

2. A method as described in claim 1, wherein the path is
described as alist of waypoints to describe the corresponding
image of the respective said vector graphic.

3. A method as described in claim 1, wherein the one or
more vector graphics describe the corresponding said image
using a text description.

4. A method as described in claim 1, wherein the flattening
is performed to form the path as the glyph through creation of
curve information that describes the path.

5. A method as described in claim 1, wherein:

the web content includes a plurality of said vector graphics;

and

the forming of the file further comprises concatenating a

corresponding plurality of said glyphs into a single said
font file.

6. A method as described in claim 1, further comprising
adjusting the path and the forming is performed using the
adjusted path.

7. A method as described in claim 6, wherein the adjusting
includes adjusting a baseline of the path.

8. A method as described in claim 6, wherein the adjusting
includes fitting the path to a grid.

9. A method as described in claim 1, wherein the identifier
is a Unicode identifier.

10. A method as described in claim 9, wherein the Unicode
identifier is configured as part of a private use Unicode range.

11. A method as described in claim 1, wherein the
stylesheet file includes instructions in accordance with Cas-
cading Style Sheets.

12. A method as described in claim 1, wherein the forming
of the font file includes formatting the font file as a scalable
vector graphic (SVG) font file.

13. A method as described in claim 12, further comprising
converting the SVG font file into another format.

14. A system comprising:

one or more modules implemented at least partially in

hardware, the one or more modules configured to per-
form operations including generating a font file from
one or more vector graphics and a stylesheet file that
describes the one or more vector graphics included in
web content, the generating including:

converting each of the one or more vector graphics into a

list of waypoints that describe a path corresponding to an
image of a respective said vector graphic, the converting

10

20

25

30

35

40

14

replacing a textual description of the respective said
vector graphic with the list of waypoints;

forming the font file to include, for each said list of way-

points, a glyph and an identifier that is usable to identify
the glyph; and

creating the stylesheet file having a class that corresponds

to the glyph and corresponding identifier.

15. A system as described in claim 14, wherein

the web content includes a plurality of said vector graphics;

and

the forming of the file further comprises concatenating a

corresponding plurality of said glyphs into a single said
font file.
16. A system as described in claim 14, further comprising
adjusting the path and the forming is performed using the
adjusted path, the adjusting including adjusting a baseline of
the path or fitting the path to a grid.
17. A system as described in claim 14, wherein the
stylesheet file is a Cascading Style Sheet and the font file is
formatted in accordance with a scalable vector graphic (SVG)
font file.
18. One or more non-transitory computer-readable storage
media comprising instructions that are stored thereon that,
responsive to execution by a computing device, causes the
computing device to perform operations comprising:
receiving web content from a service provider via a net-
work, the web content including a font file having a
plurality of glyphs, each of the glyphs having a list of
waypoints that are converted from one or more vector
graphics and are associated with an identifier, the con-
verting replacing a textual description of the respective
one or more vector graphics with a list of waypoints; and

consuming the web content by a content management sys-
tem.

19. One or more non-transitory computer-readable storage
media as described in claim 18, wherein the web content is
configured as a content package.

20. One or more non-transitory computer-readable storage
media as described in claim 19, wherein the consuming of the
content includes installation of the content package received
via application programming interface for a content reposi-
tory of a content management system.

#* #* #* #* #*

